Assignment 9.

1. (a) Omit
(b) Let $f(x)=\frac{x}{3}+2-e^{-x}$, then $f(-1)=-1.05<0$, and $f(0)=1>0$, so there is $x \in(-1,0)$ such that $f(x)=0$, it follows that $\frac{x}{3}+2=e^{-x}$ has a root lies between -1 and 0 .
(c) Suppose $x_{n} \rightarrow \alpha$, then $x_{n+1} \rightarrow \alpha$, hence $\alpha=\ln 3-\ln (\alpha+6)$, then $e^{\alpha}=\frac{3}{\alpha+6}$, it follows $e^{-\alpha}=\frac{\alpha+6}{3}$, which implies that $\frac{\alpha}{3}+2=e^{\alpha}$.
(d) -0.59 .
2. (a) Omit
(b) Omit
(c) 5.64
3. (a) $1+x^{3}-\frac{1}{2} x^{6}$
(b) 1.00
(c) Omit
(d) $-0.5<x<0, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}<0$, for $0<x<0.5, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0$
4. (a) Omit
(b) $\frac{26}{3}$
(c) 8.61
(d) greater.
