Assignment 9.

- 1. (a) Omit
 - (b) Let $f(x) = \frac{x}{3} + 2 e^{-x}$, then f(-1) = -1.05 < 0, and f(0) = 1 > 0, so there is $x \in (-1, 0)$ such that f(x) = 0, it follows that $\frac{x}{3} + 2 = e^{-x}$ has a root lies between -1 and 0.
 - (c) Suppose $x_n \to \alpha$, then $x_{n+1} \to \alpha$, hence $\alpha = \ln 3 \ln(\alpha + 6)$, then $e^{\alpha} = \frac{3}{\alpha+6}$, it follows $e^{-\alpha} = \frac{\alpha+6}{3}$, which implies that $\frac{\alpha}{3} + 2 = e^{\alpha}$.
 - (d) -0.59.
- 2. (a) Omit
 - (b) Omit
 - (c) 5.64
- 3. (a) $1 + x^3 \frac{1}{2}x^6$
 - (b) 1.00
 - (c) Omit
 - (d) $-0.5 < x < 0, \frac{d^2y}{dx^2} < 0$, for $0 < x < 0.5, \frac{d^2y}{dx^2} > 0$
- 4. (a) Omit
 - (b) $\frac{26}{3}$
 - (c) 8.61
 - (d) greater.